Основные понятия системного анализа

Общие положения

Лекция № 1. Основы теории принятия решений

Теория принятия оптимальных решений в наиболее общем смысле представляет собой совокупность математических и численных методов, ориентированных на нахождение наилучших вариантов из множества альтернатив и позволяющих избежать их полного перебора.

Практическая потребность общества в научных основах принятия решений возникла с развитием науки и техники .

Научно-техническими предпосылками становления «Теории принятия решений» являются:

— удорожание «цены ошибки». Чем сложнее, дороже, масштабнее планируемое мероприятие, тем менее допустимы в нем «волевые» решения и тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения, заранее исключить недопустимые варианты и рекомендовать наиболее удачные;

— ускорение научно-технической революции техники и технологии. Жизненный цикл технического изделия сократился настолько, что «опыт» не успевал накапливаться и требовалось применение более развитого математического аппарата в проектировании;

— развитие ЭВМ. Размерность и сложность реальных инженерных задач не позволяло использовать аналитические метода.

Эта наука, с одной стороны, стала определенной ветвью других более общих наук (теория систем, системный анализ, кибернетика и т.д.), а с другой, стала синтезом определенных фундаментальных более частных наук (исследование операций, оптимизация и т.д.), создав при этом и собственную методологию.

В научно-технической литературе существует ряд терминов, имеющих отношение к исследованию сложных систем.

Наиболее общий термин «теория систем». Его основными частями являются:

— системный анализ, который понимается как исследование проблемы принятия решения в сложной системе,

— кибернетика, которая рассматривается как наука об управлении и преобразовании информации.

Кибернетика изучает отдельные и строго формализованные процессы, а системный анализ — совокупность процессов и процедур.

Очень близкое к термину «системный анализ» понятие – «исследование операций», которое традиционно обозначает математическую дисциплину, охватывающую исследование математических моделей для выбора величин, оптимизирующих заданную математическую конструкцию (критерий).

Системный анализ может сводиться к решению ряда задач исследования операций, но обладает свойствами, не охватываемыми этой дисциплиной.

Системный анализ — наука, занимающаяся проблемой принятия решения в условиях анализа большого количества информации различной природы.

Цель системного анализа( к конкретной проблеме)-повышение степени обоснованности принимаемого решения из множества вариантов, среди которых производится выбор, с одновременным указанием способов отбрасывания заведомо невыгодных.

В системном анализе выделяют: методологию, аппаратную реализацию, практические приложения.

Методология включает определения используемых понятий и принципы системного подхода.

Основные определения системного анализа.

Элемент — некоторый объект (материальный, энергетический, информационный), который обладает рядом важных для нас свойств, но внутреннее строение (содержание) которого безотносительно к цели рассмотрения.

Связь — важный для целей рассмотрения обмен между элементами веществом, энергией, информацией.

Система — совокупность элементов, которая обладает следующими признаками:

— связями, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента совокупности;

— свойством, отличным от свойств отдельных элементов совокупности.

Практически любой объект с определенной точки зрения может быть рассмотрен как система. Вопрос состоит в том, насколько целесообразна такая точка зрения.

Большая система — система, которая включает значительное число однотипных элементов и однотипных связей.

Сложная система — система, которая состоит из элементов разных типов и обладает разнородными связями между ними. В качестве примера можно привести ЭВМ, самолет или судно.

Автоматизированная система — сложная система с определяющей ролью элементов двух типов:

— в виде технических средств;

-в виде действия человека.

Для сложной системы автоматизированный режим считается более предпочтительным, чем автоматический.

Например, посадка самолета или управление автомобилем выполняется при участии человека, а автопилот или бортовой компьютер используется лишь на относительно простых операциях. Типична также ситуация, когда решение, выработанное техническими средствами, утверждается к исполнению человеком.

Структура системы — расчленение системы на группы элементов с указанием связей между ними, неизменное на все время рассмотрения и дающее представление о системе в целом.

Указанное расчленение может иметь материальную, функциональную, алгоритмическую или другую основу.

Пример материальной структуры — структурная схема сборного моста, которая состоит из отдельных, собираемых на месте секций и указывает только эти секции и порядок их соединения.

Пример функциональной структуры — деление двигателя внутреннего сгорания на системы питания, смазки, охлаждения, передачи крутящего момента

Пример алгоритмической структуры — алгоритм программного средства, указывающего последовательность действий или инструкция, которая определяет действия при отыскании неисправности технического устройства.

Структура системы может быть охарактеризована по имеющимся в ней типам связей. Простейшими из них являются последовательное, параллельное соединение и обратная связь

Декомпозиция — деление системы на части, удобное для каких-либо операций с этой системой.

Примерами будут: разделение объекта на отдельно проектируемые части, зоны обслуживания; рассмотрение физического явления или математическое описание отдельно для данной части системы.

Иерархия — структура с наличием подчиненности, т.е. неравноправных связей между элементами, когда воздействие в одном из направлений оказывают гораздо большее влияние на элемент, чем в другом. Виды иерархических структур разнообразны, но важных для практики иерархических структур всего две — древовидная и ромбовидная.

Древовидная структура наиболее проста для анализа и реализации. Кроме того, в ней всегда удобно выделять иерархические уровни — группы элементов, находящиеся на одинаковом удалении от верхнего элемента.

Пример древовидной структуры — задача проектирования технического объекта от его основных характеристик (верхний уровень) через проектирование основных частей, функциональных систем, групп агрегатов, механизмов до уровня отдельных деталей.

Принципы системного подхода — это положения общего характера, являющиеся обобщением опыта работы человека со сложными системами.

Их часто считают ядром методологии. Это такие принципы, как:

— принцип конечной цели: абсолютный приоритет конечной цели;

-принцип единства: совместное рассмотрение системы как целого и как совокупности элементов;

-принцип связности: рассмотрение любой части совместно с ее связями с окружением;

-принцип модульного построения: полезно выделение модулей в системе и рассмотрение ее как совокупности модулей;

-принцип иерархии: полезно введение иерархии элементов и(или) их ранжирование;

-принцип функциональности: совместное рассмотрение структуры и функции с приоритетом функции над структурой;

-принцип развития: учет изменяемости системы, ее способности к развитию, расширению, замене частей, накапливанию информации;

-принцип децентрализации: сочетание в принимаемых решениях и управлении централизации и децентрализации;

— принцип неопределенности: учет неопределенностей и случайностей в системе.

Аппаратная реализация включает стандартные приемы моделирования принятия решения в сложной системе и общие способы работы с этими моделями. Модель строится в виде связных множеств отдельных процедур. Системный анализ исследует как организацию таких множеств, так и вид отдельных процедур, которые максимально приспосабливают для принятия согласующихся и управленческих решений в сложной системе.

В отличие от большинства научных дисциплин, стремящихся к формализации, системный анализ допускает, что в определенных ситуациях неформализуемые решения, принимаемые человеком, являются более предпочтительными.

Формализуемые стороны отдельных операций лежат в области прикладной математики и использования ЭВМ.

В ряде случаев математическими методами исследуется связное множество процедур и производится само моделирование принятие решения.

В этом и состоит математическая основа системного анализа.

Такие области прикладной математики, как исследование операций и системное программирование, наиболее близки к системной постановке вопросов.

Практическое приложение системного анализа чрезвычайно обширно по содержанию. Важнейшими разделами являются научно-технические разработки и различные задачи экономики.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *