Контрольные работы по алгебре в 9 классе

Дифференцированный подход на уроках математики.

Разноуровневые контрольные работы

Варианты контрольных работ для учащихся 9-х классов, которые включают в себя задания 3-х уровней.

Выполнение 1 и 2 варианта рассчитано на удовлетворительный результат, для поднятия оценки достаточно решения задания обозначенного *. Следовательно, выполнение 3 и 4 вариантов оценивается на «хорошо», а 5и 6 вариантов на «отлично».

Контрольная работа №1 по теме «Квадратичная функция.»

Уровень «А»

Вариант 1.

1.Разложите на множители квадратный трехчлен:

а) х2-14х+45; в)3у2+7у-6

2.Постройте график функции у=х2-2х-8.Найдите с помощью графика:

А) значение у, при х=-1,05;

Б) значения х, при которых у=3;

В) нули функции;

Г) промежуток, в котором функция возрастает.

3.Сократите дробь: 2+р-2

4-9р2

4*.Не выполняя построение, определите, пересекаются ли парабола у=1 и

2

прямая у=6х-15. Если точки пересечения существуют , то найдите их координаты.

Вариант 2

1.Разложите на множители квадратный трехчлен:

а) х2-10х+21; в)5у2+9у-2

2.Постройте график функции у=х2-4х-5.Найдите с помощью графика:

А) значение у, при х=0,5;

Б) значения х, при которых у=3;

В) нули функции;

Г) промежуток, в котором функция убывает.

3.Сократите дробь: 2+7с-2

1-16с2

4*.Не выполняя построение, определите, пересекаются ли парабола у=1 и

2 прямая у=12-х, если точки пересечения существуют, то на
йдите их координаты.

Уровень «В»

Вариант 1.

1.Докажите, что данные два квадратные трехчлена имеют общий корень и найдите его:14х2+19х-3 и -14х2+37х-5.

2.Постройте график функции и укажите на нем все точки, координаты которых удовлетворяют данному условию. Найдите координаты этих точек: у=х2-4х+4, абсцисса равна ординате.

3.Сократите дробь и вычислите её значение при х=х0: -15х2+13х-2

2-8х+4 , х0=4,2

4.Пусть f(x)= х2-6х+9 _ х2-8х+16, найдите f(5/9)

3-х

5*.При каких значениях а график данной функции проходит через данную точку k: у = aх2-5х-3,k(-1;3).

Вариант 2.

1.Докажите, что данные два квадратные трехчлена имеют общий корень и найдите его: -15х2+4х+4 и 15х2+х-2.

2.Постройте график функции и укажите на нем все точки , координаты которых удовлетворяют данному условию. Найдите координаты этих точек: у=х2+2х+2, сумма абсциссы и ординаты равна нулю.

3.Сократите дробь и вычислите её значение при х=х0: -15х2+13х-2

2-8х+4 , х0=4,2

4.Пусть f(x)= х2-4х+4 _ х2-8х+16, найдите f(3/7)

4-x

< font size="4">5*.При каких значениях а график данной функции проходит через данную точку k: у = 3х2-ах-1, k(-2;1).

Уровень «С»

Вариант 1.

1.Найдите корни квадратного трехчлена и проверьте для них теорему Виета (проверку запишите аналитически): hello_html_7922e9f7.gifх2 hello_html_m74925d1e.gifх-1

2.Изобразите фигуру ,ограниченную графиками функций(выделите её штриховкой) у=х2 и у=2х+3.Укажите координаты точки этой фигуры имеющей наибольшую ординату.

3.Пусть х1и х2 – корни квадратного трехчлена х2-7х-1.Найдите значение выражения : U(x1;x2)=x1 hello_html_1a05822c.gif

4.При каких значениях а квадратный трехчлен -3х2+х-а имеет корень

х = —hello_html_m6a8c486f.gif

5 . Не выполняя построения графиков функций у = х2-2х-3 и у = х2+2х-1, постройте прямую проходящую через общие точки этих графиков и напишите уравнение этой прямой.

Вариант 2.

1. Найдите корни квадратного трехчлена и проверьте для них теорему Виета(проверку запишите аналитически): hello_html_m25f5dbbe.gifх2 hello_html_731ffb7.gifх+1

2. Изобразите фигуру, ограниченную графиками функций(выделите её штриховкой) у=х2 и у=6-х. Укажите координаты точки этой фигуры имеющей наименьшую абсциссу.

3. Пусть х1и х2 – корни квадратного трехчлена х2-5х+1.Найдите значение выражения:

U(x1;x2)= hello_html_303c478.gif
2

4. При каких значениях а квадратный трехчлен 5х2+2х+а имеет корень х=hello_html_41b08e2a.gif

5. Не выполняя построения графиков функций у=х2+4х+5 и у = -х2-4х-1, постройте прямую проходящую через общие точки этих графиков и напишите уравнение этой прямой.

Контрольная работа №2 по теме «Неравенства второй степени с одной переменной».

Вариант №1.

1.Решить неравенство:

А) 2х2-13х+6<0 ; б) х2-9>0 в) 3х2-6х+32>0

2.Решить неравенство используя метод интервалов:

А) (х+8)(х-4)>0 Б) hello_html_46eebc21.gif<0

3. Дана функция у =hello_html_e35a498.gif

Найдите область её определения.

4*.При каких значениях t уравнение 3х2+tх+3=0 имеет два корня?

Вариант 2

1.Решить неравенство:

А) 2х2-х-15 >0 ; б) х2-16<0 в) х2+12х+8<0

2.Решить неравенство, используя метод интервалов:

А) (х+8)(х-4)<0 Б) hello_html_46eebc21.gif>0

3. Дана функция у = hello_html_7970a504.gif

Найдите область её определения.

4*.При каких значениях t уравнение 2х2+tх+8=0 не имеет корней?

Вариант 3

1.Решите неравенство:

а) х2-5х-6 >0 ; б) 4х2 ≤ х

2.Дана функция f(х)=6х-х2 найдите при каких значениях х, f(х)>0, f(х)≤0.

3.Решите неравенство используя метод интервалов:

а) х(х-1)(х+2)<0 б) hello_html_m42360d1f.gif≥0 в)hello_html_m2e5bbae9.gif
<1.

4. При каких значениях в определено выражение hello_html_83e14cf.gif +hello_html_1b23e95f.gif

5. При каких значениях параметра а уравнение 3х2+ах+а-3=0 имеет два различных корня?

Вариант 4

1.Решите неравенство :

а) х2+2х-12 <0 ; б) х2≥ 25

2.Дана функция f(х)=х2-2х найдите при каких значениях х, f(х)≥0, f(х)<0.

3.Решите неравенство используя метод интервалов:

а) х(х+1)(х-3)>0 б) hello_html_13946cae.gif≤0 в)hello_html_m2e5bbae9.gif>1.

4. При каких значениях в определено выражение hello_html_525bb110.gif +hello_html_722e56d3.gif

5. При каких значениях параметра а уравнение 4х2+ах+а-4=0 имеет два различных корня?

Контрольная работа №3 по теме «Целое уравнение и его корни»

Вариант 1.

1.Решите уравнение:

а) х3-25х=0 ; б)hello_html_4eb3c2ce.gif — —hello_html_m346797c3.gif=1

2. Решите биквадратное уравнение : х4-4х2-45=0

3.Решите уравнение используя введение новой переменной :

а) (х2-7)2-4(х2-7)-45=0; б) (х2-х+1)( х2-х-7)=65.

4*. При каких значениях параметра а уравнение имеет один корень:

х4-6х2+а=0.

Вариант 2.

1.Решите уравнение:

а) х3-81х=0 ; б)hello_html_1b4f4d85.gif — —hello_html_677aaec5.gif=2

2. Решите биквадратное уравнение : х4-19х2+48=0

3.Решите уравнение используя введение новой переменной :

а)(х2-10)2-3(х2-10)+4=0 ; б) (х2+х+6)( х2+х-4)=144.

4*. При каких значениях параметра а уравнение имеет один корень:

х4-8х2+а=0.

Вариант 3.

1.решите уравнение:

(1-2х)(4х2+2х+1)=(2-2х)(4+4х)(х+2)

2.Решите уравнение указанным способом:

а) замена переменной: 2(hello_html_79f45310.gif)2-7hello_html_m17652cdc.gif+5=0,

б) разложите на множители: hello_html_66045ace.gif)2-1=0

в) х4-9х2+18=0.

3*. При каких значениях параметра а уравнение имеет один корень:

ах2— (2а+6)х+3а+3=0.

Вариант 4.

1.решите уравнение:

(8х-16)(х2-1)=(4х2-2х+1)(2х+1)

2.Решите уравнение указанным способом:

а) замена переменной 5(hello_html_m7f861878.gif)2-7hello_html_m6afe6076.gif-3=0,

б) разложите на множители hello_html_m1aa2d60a.gif)2 hello_html_2d00e7bb.gif=0

в) х4+3х2-10=0.

3*. При каких значениях параметра а уравнение имеет два различных корня:

ах2+(4а-2)х +hello_html_19ae0ad5.gif=0.

Вариант 5.

1.Решите уравнения:

а) 8х-(2+х2)(2-х2)=(х2-2х)+4х3< /sup>;

б) hello_html_52998279.gif)2-2hello_html_m5ab00b5c.gif)+1=0;

в) х3-3х2-4х+12=0;

г) 4х4-12х2+1=0

2. При каких значениях параметра а уравнение не имеет корней

(а-1)х2+2хhello_html_mb3d1f7c.gif +1=0 .

3. Решите уравнение: 4(2х-hello_html_m155d6080.gif )4+7(2х-hello_html_7c6d7821.gif2-2=0.

Вариант 6.

1.Решите уравнения:

а) (1-х2)+12х=(х3-3х)(х3 +3х);

б) 4(hello_html_16acc5ba.gif)2+5*hello_html_16acc5ba.gif+1=0;

в) х3+5х2-4х-20=0 ;

г) 12у42-1=0

2. При каких значениях параметра а уравнение имеет два различных корня

ах2+2хhello_html_m78ba57b3.gif -2=0 ;

3. Решите уравнение: 9(hello_html_415819ce.gif+hello_html_mfb88ae4.gif )4+14(hello_html_7f8fcfc1.gif+hello_html_4a9e3c4f.gif2-8=0

Контрольная работа №4 по теме: « Системы уравнений»

Вариант 1.

1.Решите систему уравнений:hello_html_m3ecb8e52.gif

2.Периметр прямоугольника равен 28 м, а его площадь равна 40 м2. Найдите стороны прямоугольника.

3. Не выполняя построения найдите координаты точек пересечения параболы у=х2+4 и прямой х+у=6.

4.*Решите систему уравнений hello_html
_m2f2002a9.gif

Вариант 2.

1.Решите систему уравнений:hello_html_m1577332d.gif

2.одна из сторон прямоугольника на 2 см больше другой стороны .Найдите стороны прямоугольника , если его площадь равна 120 см2.

3. Не выполняя построения найдите координаты точек пересечения параболы у=х2-8 и прямой х+у=4.

4.*Решите систему уравнений hello_html_m7c745.gif

Вариант 3.

1.Решите систему уравнений : hello_html_2cf6fe28.gif

2.Басейн заполняется водой ,поступающей через две трубы. Одна труба может заполнить бассейн за 12 часов , а другая за 20 часов. За сколько часов заполниться бассейн работая одновременно ?

3.Решите графически систему уравнений :hello_html_m203dd4a4.gif

4*.Решите систему уравнений: hello_html_5660bbee.gif

Вариант 4.

1.Решите систему уравнений: hello_html_m132d03cb.gif

2.Вода , поступающая в первую трубу , может заполнить бассейн за 6 ч. , а вода , вытекающая из второй трубы , может его опорожнить за 15 ч.За сколько часов наполниться бассейн , если обе трубы будут одновременно открыты ?

3.Решите графически систему уравнений:hello_html_276c9f0d.gif

4*.Решите систему уравнений: hello_html_m4f740571.gif

Вариант 5.

  1. Решите систему уравнений: hello_html_1c214773.gif

  2. Произведение двух чисел равно 10 , а их сумма составляет 70 % от произведения. Найдите эти числа.

  3. Решите графически систему уравнений: hello_html_m5693129.gif

4.Решите систему уравнений:hello_html_m2ca839c9.gif

Вариант 6.

  1. Решите систему уравнений: hello_html_74bb0390.gif

  2. Если разделить возраст старшего брата на возраст младшего брата , то получится hello_html_m4a7920cc.gif , а сумма их возрастов равна 30.Сколько лет каждому брату ?

  3. Решите графически систему уравнений:hello_html_m22205cb.gif

4.Решите систему уравнений:hello_html_m1b5d4d35.gif

Контрольная работа №5 по теме: « Арифметическая прогрессия».

Вариант 1.

1.Найдите а45 арифметической прогрессии (аn), если а1=65, d=-2.

2.Найдите S24 арифметической прогрессии: 42; 34; 26;…

3.Является ли число 6,5 членом арифметической прогрессии (аn), в которой а1= 2,25 и а11=10,25 ?

4*.Найдите сумму членов с третьего по десятый включительно арифметической прогрессии: -3; -1; …

Вариант 2.

1.Найдите а32 арифметической прогрессии (аn), если а1=-9, d=4.

2.Найдите S14 арифметической прогрессии : -63; -58; -33…

3.Является ли число 35,8 членом арифметической прогрессии(аn), в которой а1= 23,6 и а22=11 ?

4*.Найдите сумму членов с третьего по десятый включительно арифметической прогрессии: 2; 7; …

Вариант 3.

1.В арифметической прогрессии (аn) а1=8 ,а11=104, d=3.Найдите n и Sn.

2. В арифметической прогрессии (аn) d=-7, n=-149.Найдите а1 и Sn.

3. В арифметической прогрессии 59; 55; 51; … найдите сумму всех её положительных членов.

4*.Найдите седьмой член арифметической прогрессии, если а3+ аn=20.

Вариант 4.

1.В арифметической прогрессии (аn) а1=5 ,аn=509, n =100.Найдите d и Sn.

2. В арифметической прогрессии (аn) d=3, n=15, аn=50.Найдите а1 и Sn.

3. В арифметической прогрессии -63; -58; -53; … найдите сумму всех её отрицательных членов.

4*.Запишите формулу n-го члена и суммы n первых членов арифметической прогрессии (аn) , если а25=112, hello_html_m141fc9d4.gif.

Вариант 5.

1. Градусные меры углов αn составляют арифметическую прогрессию, у которой α1=30о , α2=35о. Найдите hello_html_827b90d.gif.

2. В арифметической прогрессии аn=37,7-0,3n. Найдите наибольший отрицательный член этой прогрессии.

3. Сумма первых восьмидесяти трех членов арифметической прогрессии равна 5623.Найдите сумму первых восьмидесяти трех членов такой прогрессии , каждый член которой на 2 больше соответствующего члена данной прогрессии. ( ответ обоснуйте ).

4. В арифметической прогрессии вычислите: hello_html_m6ea3b95e.gif+ 2а7а5+hello_html_788bb633.gif-(а84)2

Вариант 6.

1. Градусные меры углов αn составляют арифметическую прогрессию, у которой α1=10о , α2=15о. Найдите hello_html_m11cab91.gif

2. В арифметической прогрессии аn=0,7n-35,1. Найдите наименьший положительный член этой прогрессии.

3. Сумма первых ста семи членов арифметической прогрессии равна 4835.Найдите сумму первых ста семи членов такой прогрессии , каждый член которой на 3 меньше соответствующего члена данной прогрессии. ( ответ обоснуйте ).

4. В арифметической прогрессии вычислите: hello_html_m52388f76.gif-4а1а9+hello_html_m1c144003.gif172

Контрольная работа №6 по теме: «Геометрическая прогрессия»

Вариант 1.

1.Найдите в9 геометрической прогрессии (вn) , если в1=-32 и g=1/2.

2. Найдите S6 геометрической прогрессии, если в1=2 и q=3.

3. Найдите сумму бесконечной геометрической прогрессии: 24; -12; 6

4. Представьте в виде обыкновенной дроби десятичную дробь

а)0,(27); в) 0,5(6)

5*.Найдите отношение суммы бесконечной геометрической прогрессии к сумме квадратов её членов, если в2=2 и q=-1/2.

Вариант 2.

1.Найдите в6 геометрической прогрессии (вn) , если в1=0,81 и g=-1/3.

2. Найдите S7 геометрической прогрессии , если в1=6 и q=2.

3. Найдите сумму бесконечной геометрической прогрессии: -40; 20; -10;…

4. Представьте в виде обыкновенной дроби десятичную дробь

а)0,(153); в) 0,03(2)

5*.Найдите отношение суммы бесконечной геометрической прогрессии к сумме её членов с нечетными номерами, если в1=3 и q=1/3.

Вариант 3.

1.В геометрической прогрессии (вn) : в1=2, вn=1024, Sn=2046.Найдите q и n.

2. В геометрической прогрессии ( вn): в1=0,5, вn=256,q=2. Найдите n и Sn.

3. Найдите сумму членов с третьего по шестой включительно геометрической прогрессии : 1/16 ; 1/8;…

4.В бесконечной геометрической прогрессии в2=0,3 ; в3=-0,2.Найдите сумму этой прогрессии.

5*. Напишите формулу n-го члена и суммы n— первых членов геометрической прогрессии, если в3— в2=12 , 2в3+ в4=96.

Вариант 4.

1.В геометрической прогрессии (вn): в1=512, вn=1,Sn=1023.Найдите q и n.

2. В геометрической прогрессии (вn): в1=80, вn=5,q=0,5. Найдите n и Sn.

3. Найдите сумму членов с третьего по шестой включительно геометрической прогрессии : 32 ; 16;…

4.В бесконечной геометрической прогрессии в2=24; S=108.Найдите в1 и q..

5*. Напишите формулу n-го члена и суммы n— первых членов геометрической прогрессии, если в34=27 , в19/ в17=9.

Вариант 5.

1.В геометрической прогрессии (вn): q=2, n=11,Sn=1023,5.Найдите в1 и вn.

2.В бесконечной геометрической прогрессии в1=15,S=18.Найдите q.

3.Второй член геометрической прогрессии составляет 20% от её первого члена. Сколько процентов составляет её пятый член от третьего?

4. Знаменатель геометрической прогрессии равен -0,5 , а первый член 64. Найдите сумму квадратов первых восьми членов этой прогрессии.

5. В геометрической прогрессии hello_html_m7f0103d.gifдите S24//S12

Вариант 6.

1.В геометрической прогрессии (вn) :q=1/3, n=3, Sn=121.Найдите в1 и вn.

2.В бесконечной геометрической прогрессии в1=18,n=3,S=121.Найдите вn.

3.Второй член геометрической прогрессии составляет 110% от её первого члена. Сколько процентов составляет её шестой член от четвертого?

4. первый член геометрической прогрессии равен hello_html_m56b31f8c.gif, а знаменатель 2. Найдите сумму величин , обратных первым двадцати членам этой прогрессии.

5. В геометрической прогрессии S18/S9=7.hello_html_17fe3d8a.gifдите hello_html_41f75559.gif.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *